Solving Exponential and Logarithmic Equations

Exponential Equations

The variable is in the exponent:

2x=83x=20ex=52^x = 8 \qquad 3^x = 20 \qquad e^x = 5


Easy Case: Same Base

If both sides have the same base, match the exponents.


Example: Solve 2x=82^x = 8

Rewrite 8 as a power of 2:

2x=232^x = 2^3

Same base, so exponents are equal:

x=3x = 3


Example: Solve 32x=813^{2x} = 81

Rewrite 81 as a power of 3:

32x=343^{2x} = 3^4

Match exponents:

2x=4x=22x = 4 \quad \Rightarrow \quad x = 2


Hard Case: Use Logarithms

When you can’t match bases, take the log of both sides.

Key property: log(an)=nlog(a)\log(a^n) = n \cdot \log(a)


Example: Solve 2x=102^x = 10

Can’t write 10 as a power of 2. Take log of both sides:

log(2x)=log(10)xlog(2)=1x=1log(2)x3.32\begin{aligned} \log(2^x) &= \log(10) \\ x \cdot \log(2) &= 1 \\ x &= \frac{1}{\log(2)} \\ x &\approx 3.32 \end{aligned}

Example: Solve ex=7e^x = 7

Take ln of both sides (natural log pairs with base ee):

ln(ex)=ln(7)x=ln(7)x1.95\begin{aligned} \ln(e^x) &= \ln(7) \\ x &= \ln(7) \\ x &\approx 1.95 \end{aligned}

Example: Solve 5x+1=305^{x+1} = 30

log(5x+1)=log(30)(x+1)log(5)=log(30)x+1=log(30)log(5)x=log(30)log(5)1x1.11\begin{aligned} \log(5^{x+1}) &= \log(30) \\ (x+1) \cdot \log(5) &= \log(30) \\ x + 1 &= \frac{\log(30)}{\log(5)} \\ x &= \frac{\log(30)}{\log(5)} - 1 \\ x &\approx 1.11 \end{aligned}

Logarithmic Equations

The variable is inside the log:

log(x)=2ln(x+1)=3\log(x) = 2 \qquad \ln(x + 1) = 3

Strategy: Convert to exponential form.


Example: Solve log(x)=2\log(x) = 2

Convert to exponential form:

102=x10^2 = x

x=100x = 100


Example: Solve ln(x)=4\ln(x) = 4

Convert to exponential form:

e4=xe^4 = x

x54.6x \approx 54.6


Example: Solve log2(x1)=5\log_2(x - 1) = 5

Convert to exponential form:

25=x132=x1x=33\begin{aligned} 2^5 &= x - 1 \\ 32 &= x - 1 \\ x &= 33 \end{aligned}

Summary

Equation typeStrategy
bx=byb^x = b^yMatch exponents: x=yx = y
bx=cb^x = cTake log: x=log(c)log(b)x = \dfrac{\log(c)}{\log(b)}
logb(x)=c\log_b(x) = cConvert to exponential: x=bcx = b^c