Logarithm Properties

The Three Main Properties

These come directly from exponent laws.


Product Rule

logb(xy)=logb(x)+logb(y)\log_b(xy) = \log_b(x) + \log_b(y)

Log of a product = sum of the logs.


Why it works:

If bm=xb^m = x and bn=yb^n = y, then:

xy=bmbn=bm+nxy = b^m \cdot b^n = b^{m+n}

So logb(xy)=m+n=logb(x)+logb(y)\log_b(xy) = m + n = \log_b(x) + \log_b(y).


Example:

log(6)=log(2×3)=log(2)+log(3)\log(6) = \log(2 \times 3) = \log(2) + \log(3)


Quotient Rule

logb(xy)=logb(x)logb(y)\log_b\left(\frac{x}{y}\right) = \log_b(x) - \log_b(y)

Log of a quotient = difference of the logs.


Why it works:

If bm=xb^m = x and bn=yb^n = y, then:

xy=bmbn=bmn\frac{x}{y} = \frac{b^m}{b^n} = b^{m-n}

So logb(xy)=mn=logb(x)logb(y)\log_b\left(\frac{x}{y}\right) = m - n = \log_b(x) - \log_b(y).


Example:

log(5)=log(102)=log(10)log(2)=1log(2)\begin{aligned} \log(5) &= \log\left(\frac{10}{2}\right) \\ &= \log(10) - \log(2) \\ &= 1 - \log(2) \end{aligned}

Power Rule

logb(xn)=nlogb(x)\log_b(x^n) = n \cdot \log_b(x)

Log of a power = exponent times the log.


Why it works:

If bm=xb^m = x, then m=logb(x)m = \log_b(x), and:

xn=(bm)n=bmn\begin{aligned} x^n &= (b^m)^n \\ &= b^{mn} \end{aligned}

So logb(xn)=mn\log_b(x^n) = mn.

Substitute m=logb(x)m = \log_b(x):

logb(xn)=nlogb(x)\log_b(x^n) = n \cdot \log_b(x)


Example:

log(8)=log(23)=3log(2)\log(8) = \log(2^3) = 3 \cdot \log(2)


Summary

PropertyRule
Productlogb(xy)=logb(x)+logb(y)\log_b(xy) = \log_b(x) + \log_b(y)
Quotientlogb(xy)=logb(x)logb(y)\log_b\left(\frac{x}{y}\right) = \log_b(x) - \log_b(y)
Powerlogb(xn)=nlogb(x)\log_b(x^n) = n \cdot \log_b(x)

Special Values

logb(1)=0\log_b(1) = 0

Because b0=1b^0 = 1.

logb(b)=1\log_b(b) = 1

Because b1=bb^1 = b.


Change of Base Formula

To convert between bases:

logb(x)=loga(x)loga(b)\log_b(x) = \frac{\log_a(x)}{\log_a(b)}

Most useful form:

logb(x)=log(x)log(b)=ln(x)ln(b)\log_b(x) = \frac{\log(x)}{\log(b)} = \frac{\ln(x)}{\ln(b)}


Example: Calculate log2(10)\log_2(10)

log2(10)=log(10)log(2)=10.3013.32\begin{aligned} \log_2(10) &= \frac{\log(10)}{\log(2)} \\[0.5em] &= \frac{1}{0.301} \\[0.5em] &\approx 3.32 \end{aligned}