Mathematical Induction

What is Mathematical Induction?

A technique for proving something is true for all natural numbers.

Think of it like dominos.


The Two Steps

StepDominosMath
Base caseFirst domino fallsTrue for n = 1
Inductive stepIf domino k falls, domino k+1 fallsIf true for k, then true for k+1

If both steps work, all dominos fall.

Prove the first. Prove the chain. Done.


The Method

To prove a statement P(n) is true for all n:

  1. Base case: Show P(1) is true
  2. Inductive step:
    • Assume P(k) is true for some k (this is the “inductive hypothesis”)
    • Prove P(k+1) is true
  3. Conclusion: P(n) is true for all n

Example 1: Sum of First n Numbers

Claim: 1+2+3++n=n(n+1)21 + 2 + 3 + \ldots + n = \frac{n(n+1)}{2}


Check by hand first:

nLeft sideRight side
111(1+1)2=22=1\frac{1(1+1)}{2} = \frac{2}{2} = 1
21 + 2 = 32(2+1)2=62=3\frac{2(2+1)}{2} = \frac{6}{2} = 3
31 + 2 + 3 = 63(3+1)2=122=6\frac{3(3+1)}{2} = \frac{12}{2} = 6
41 + 2 + 3 + 4 = 104(4+1)2=202=10\frac{4(4+1)}{2} = \frac{20}{2} = 10

Pattern works! Now prove it.


Base case (n = 1):

  • Left: 1
  • Right: 1(2)2=1\frac{1(2)}{2} = 1
  • Equal

First domino falls.


Inductive step:

Assume it works for k:

1+2+3++k=k(k+1)21 + 2 + 3 + \ldots + k = \frac{k(k+1)}{2}

Show it works for k + 1.

Substitute n=k+1n = k + 1 into the formula n(n+1)2\frac{n(n+1)}{2}:

(k+1)((k+1)+1)2=(k+1)(k+2)2\frac{(k+1)((k+1)+1)}{2} = \frac{(k+1)(k+2)}{2}

So we need to show:

1+2+3++k+(k+1)=(k+1)(k+2)21 + 2 + 3 + \ldots + k + (k+1) = \frac{(k+1)(k+2)}{2}


Proof:

1+2+3++kk(k+1)2+(k+1)\underbrace{1 + 2 + 3 + \ldots + k}_{\frac{k(k+1)}{2}} + (k+1)

=k(k+1)2+(k+1)= \frac{k(k+1)}{2} + (k+1)

Rewrite (k+1)(k+1) with denominator 2:

=k(k+1)2+2(k+1)2= \frac{k(k+1)}{2} + \frac{2(k+1)}{2}

Combine the fractions:

=k(k+1)+2(k+1)2= \frac{k(k+1) + 2(k+1)}{2}

Factor out (k+1)(k+1):

=(k+1)(k+2)2= \frac{(k+1)(k + 2)}{2}


Why does this complete the proof?

We needed to show:

1+2++k+(k+1)=(k+1)(k+2)21 + 2 + \ldots + k + (k+1) = \frac{(k+1)(k+2)}{2}

And we just showed the left side simplifies to exactly (k+1)(k+2)2\frac{(k+1)(k+2)}{2}.

So if the formula works for kk, it works for k+1k+1.

If domino k falls, domino k+1 falls.


Example 2: Sum of First n Odd Numbers

Claim: 1+3+5++(2n1)=n21 + 3 + 5 + \ldots + (2n-1) = n^2


Check by hand:

nLeft sideRight side
1112=11^2 = 1
21 + 3 = 422=42^2 = 4
31 + 3 + 5 = 932=93^2 = 9
41 + 3 + 5 + 7 = 1642=164^2 = 16

Base case (n = 1):

  • Left: 1
  • Right: 12=11^2 = 1
  • Equal

Inductive step:

Assume it works for k:

1+3+5++(2k1)=k21 + 3 + 5 + \ldots + (2k-1) = k^2

Show it works for k + 1.

Substitute n=k+1n = k + 1 into the formula n2n^2:

(k+1)2(k+1)^2

So we need to show:

1+3+5++(2k1)+(2k+1)=(k+1)21 + 3 + 5 + \ldots + (2k-1) + (2k+1) = (k+1)^2


Proof:

1+3+5++(2k1)k2+(2k+1)\underbrace{1 + 3 + 5 + \ldots + (2k-1)}_{k^2} + (2k+1)

=k2+2k+1= k^2 + 2k + 1

=(k+1)2= (k+1)^2


Why does this complete the proof?

We needed to show the left side equals (k+1)2(k+1)^2.

And we just showed it simplifies to exactly (k+1)2(k+1)^2.

So if the formula works for kk, it works for k+1k+1.

If domino k falls, domino k+1 falls.


Summary

StepWhat you do
Base caseProve it works for n = 1
Inductive stepAssume for k, prove for k + 1

The base case starts the chain. The inductive step keeps it going.