Negating Quantifiers

Negating Quantifiers

What’s the opposite of “everyone passed”?

It’s NOT “everyone failed.”

It’s “someone didn’t pass.”


The Rule

To negate a quantified statement, you do two things:

  1. Flip the quantifier\forall becomes \exists, and \exists becomes \forall
  2. Move the NOT (¬\neg) inside — negate the predicate

Flip and push ¬\neg inside.



Negating \forall (Universal)

¬(x  P(x))x  ¬P(x)\neg(\forall x \; P(x)) \equiv \exists x \; \neg P(x)

StepWhat happens
Start¬(x  P(x))\neg(\forall x \; P(x)) — “NOT everyone passed”
Flip \forall to \existsx  ...\exists x \; ...
Negate predicatex  ¬P(x)\exists x \; \neg P(x) — “Someone didn’t pass”

“Not all” = “at least one doesn’t”


Negating \exists (Existential)

¬(x  P(x))x  ¬P(x)\neg(\exists x \; P(x)) \equiv \forall x \; \neg P(x)

StepWhat happens
Start¬(x  P(x))\neg(\exists x \; P(x)) — “NOT someone passed” (nobody)
Flip \exists to \forallx  ...\forall x \; ...
Negate predicatex  ¬P(x)\forall x \; \neg P(x) — “Everyone didn’t pass”

“None” = “all don’t”


Negating Nested Quantifiers

Same rule as before, but apply it to each quantifier from left to right.


Example:

¬(x  y  P(x,y))x  y  ¬P(x,y)\neg(\forall x \; \exists y \; P(x, y)) \equiv \exists x \; \forall y \; \neg P(x, y)

StepWhat happens
Start¬(x  y  P(x,y))\neg(\forall x \; \exists y \; P(x, y))
Flip first \forall to \existsx  ¬(y  P(x,y))\exists x \; \neg(\exists y \; P(x, y))
Flip second \exists to \forallx  y  ¬P(x,y)\exists x \; \forall y \; \neg P(x, y)

Flip each quantifier, negate the predicate at the end.


Three or More Quantifiers

Same rule. Just keep flipping left to right.

¬(x  y  z  P(x,y,z))x  y  z  ¬P(x,y,z)\neg(\forall x \; \exists y \; \forall z \; P(x, y, z)) \equiv \exists x \; \forall y \; \exists z \; \neg P(x, y, z)

StepResult
Start¬(x  y  z  P)\neg(\forall x \; \exists y \; \forall z \; P)
Flip \forall to \existsx  ¬(y  z  P)\exists x \; \neg(\exists y \; \forall z \; P)
Flip \exists to \forallx  y  ¬(z  P)\exists x \; \forall y \; \neg(\forall z \; P)
Flip \forall to \existsx  y  z  ¬P\exists x \; \forall y \; \exists z \; \neg P

No matter how many quantifiers, flip each one and negate at the end.