Simplifying Radicals

What is a Radical?

A radical (square root) asks: “what number, multiplied by itself, gives this?”

9=3because3×3=9\sqrt{9} = 3 \quad \text{because} \quad 3 \times 3 = 9

25=5because5×5=25\sqrt{25} = 5 \quad \text{because} \quad 5 \times 5 = 25


The Key Rule

ab=a×b\sqrt{ab} = \sqrt{a} \times \sqrt{b}

You can split a radical into a product of radicals.

This lets us pull out perfect squares.


Simplifying: The Process

  1. Find the largest perfect square factor
  2. Split the radical
  3. Simplify the perfect square part

Example: Simplify 12\sqrt{12}

12 isn’t a perfect square. But 12=4×312 = 4 \times 3, and 4 is.

12=4×3=4×3=23\begin{aligned} \sqrt{12} &= \sqrt{4 \times 3} \\ &= \sqrt{4} \times \sqrt{3} \\ &= 2\sqrt{3} \end{aligned}

Example: Simplify 50\sqrt{50}

50=25×250 = 25 \times 2

50=25×2=52\begin{aligned} \sqrt{50} &= \sqrt{25 \times 2} \\ &= 5\sqrt{2} \end{aligned}

Example: Simplify 72\sqrt{72}

72=36×272 = 36 \times 2

72=36×2=62\begin{aligned} \sqrt{72} &= \sqrt{36 \times 2} \\ &= 6\sqrt{2} \end{aligned}

What if You Miss the Largest?

You can simplify in steps. Same answer, just longer.

72=4×18=218=29×2=2×32=62\begin{aligned} \sqrt{72} &= \sqrt{4 \times 18} \\ &= 2\sqrt{18} \\ &= 2\sqrt{9 \times 2} \\ &= 2 \times 3\sqrt{2} \\ &= 6\sqrt{2} \end{aligned}

Radicals with Variables

Same rules. Pull out pairs.

x2=x\sqrt{x^2} = x

x4=x2\sqrt{x^4} = x^2

x3=x2×x=xx\sqrt{x^3} = \sqrt{x^2 \times x} = x\sqrt{x}


Example: Simplify 18x3\sqrt{18x^3}

18x3=9×2×x2×x=3x2x\begin{aligned} \sqrt{18x^3} &= \sqrt{9 \times 2 \times x^2 \times x} \\ &= 3x\sqrt{2x} \end{aligned}

Adding and Subtracting Radicals

Only combine like radicals (same number under the root).

23+53=732\sqrt{3} + 5\sqrt{3} = 7\sqrt{3}

23+52=can’t simplify2\sqrt{3} + 5\sqrt{2} = \text{can't simplify}


Sometimes you need to simplify first:

12+27=23+33=53\begin{aligned} \sqrt{12} + \sqrt{27} &= 2\sqrt{3} + 3\sqrt{3} \\ &= 5\sqrt{3} \end{aligned}

Rationalizing the Denominator

No radicals in the denominator.

Multiply top and bottom by the radical to clear it.


Example: Rationalize 12\dfrac{1}{\sqrt{2}}

12=12×22=22\begin{aligned} \frac{1}{\sqrt{2}} &= \frac{1}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} \\[0.5em] &= \frac{\sqrt{2}}{2} \end{aligned}

Example: Rationalize 35\dfrac{3}{\sqrt{5}}

35=35×55=355\begin{aligned} \frac{3}{\sqrt{5}} &= \frac{3}{\sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}} \\[0.5em] &= \frac{3\sqrt{5}}{5} \end{aligned}